Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nat Commun ; 15(1): 3454, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658551

RESUMO

In artificial nervous systems, conductivity changes indicate synaptic weight updates, but they provide limited information compared to living organisms. We present the pioneering design and production of an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for in-sensor computing. Here, we engineer a specialized mechanism for adaptively regulating ion doping through an ion-exchange membrane, enabling precise control over color-coded synaptic weight, an unprecedented achievement. The electrochromic neuromorphic transistor not only enhances electrochromatic capabilities for hardware coding but also establishes a visualized pattern-recognition network. Integrating the electrochromic neuromorphic transistor with an artificial whisker, we simulate a bionic reflex system inspired by the longicorn beetle, achieving real-time visualization of signal flow within the reflex arc in response to environmental stimuli. This research holds promise in extending the biomimetic coding paradigm and advancing the development of bio-hybrid interfaces, particularly in incorporating color-based expressions.


Assuntos
Besouros , Animais , Besouros/fisiologia , Transistores Eletrônicos , Biomimética/métodos , Biomimética/instrumentação , Redes Neurais de Computação , Cor , Vibrissas/fisiologia , Biônica/métodos , Biônica/instrumentação , Sinapses/fisiologia
3.
N Engl J Med ; 387(13): 1161-1172, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36170500

RESUMO

BACKGROUND: Currently available semiautomated insulin-delivery systems require individualized insulin regimens for the initialization of therapy and meal doses based on carbohydrate counting for routine operation. In contrast, the bionic pancreas is initialized only on the basis of body weight, makes all dose decisions and delivers insulin autonomously, and uses meal announcements without carbohydrate counting. METHODS: In this 13-week, multicenter, randomized trial, we randomly assigned in a 2:1 ratio persons at least 6 years of age with type 1 diabetes either to receive bionic pancreas treatment with insulin aspart or insulin lispro or to receive standard care (defined as any insulin-delivery method with unblinded, real-time continuous glucose monitoring). The primary outcome was the glycated hemoglobin level at 13 weeks. The key secondary outcome was the percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter; the prespecified noninferiority limit for this outcome was 1 percentage point. Safety was also assessed. RESULTS: A total of 219 participants 6 to 79 years of age were assigned to the bionic-pancreas group, and 107 to the standard-care group. The glycated hemoglobin level decreased from 7.9% to 7.3% in the bionic-pancreas group and did not change (was at 7.7% at both time points) in the standard-care group (mean adjusted difference at 13 weeks, -0.5 percentage points; 95% confidence interval [CI], -0.6 to -0.3; P<0.001). The percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter did not differ significantly between the two groups (13-week adjusted difference, 0.0 percentage points; 95% CI, -0.1 to 0.04; P<0.001 for noninferiority). The rate of severe hypoglycemia was 17.7 events per 100 participant-years in the bionic-pancreas group and 10.8 events per 100 participant-years in the standard-care group (P = 0.39). No episodes of diabetic ketoacidosis occurred in either group. CONCLUSIONS: In this 13-week, randomized trial involving adults and children with type 1 diabetes, use of a bionic pancreas was associated with a greater reduction than standard care in the glycated hemoglobin level. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT04200313.).


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemiantes , Insulina Aspart , Sistemas de Infusão de Insulina , Insulina Lispro , Adolescente , Adulto , Idoso , Biônica/instrumentação , Glicemia/análise , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Insulina Aspart/administração & dosagem , Insulina Aspart/efeitos adversos , Insulina Aspart/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversos , Insulina Lispro/administração & dosagem , Insulina Lispro/efeitos adversos , Insulina Lispro/uso terapêutico , Pessoa de Meia-Idade , Adulto Jovem
4.
Clin Transl Gastroenterol ; 12(5): e00354, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949343

RESUMO

INTRODUCTION: Defecatory disorders including obstructed defecation (OD) are currently diagnosed using specialized investigations including anorectal manometry and the balloon expulsion test. Recently, we developed a simulated stool named Fecobionics that provides a novel type of pressure measurements and analysis. The aim was to study OD phenotypes compared with slow transit constipation (STC) patients and normal subjects (NS). METHODS: Fecobionics expulsion parameters were assessed in an interventional study design. The Fecobionics device contained pressure sensors at the front, rear, and inside a bag. All constipation patients had colon transit study, defecography, anorectal manometry, and balloon expulsion test performed. The Fecobionics bag was distended in the rectum until desire-to-defecate in 26 OD compared with 8 STC patients and 10 NS. Rear-front pressures (preload-afterload parameters) and defecation indices (DIs) were compared between groups. RESULTS: The Wexner constipation scoring system score was 13.8 ± 0.9 and 14.6 ± 1.5 in the OD and STC patients (P > 0.5). The median desire-to-defecate volume was 80 (quartiles 56-80), 60 (54-80), and 45 (23-60) mL in OD, STC, and NS, respectively (P < 0.01). The median expulsion duration was 37 (quartiles 15-120), 6 (3-11), and 11 (8-11) seconds for the 3 groups (P < 0.03). Fecobionics rear-front pressure diagrams demonstrated clockwise loops with distinct phenotype differences between OD and the other groups. Most DIs differed between OD and the other groups, especially those based on the anal afterload reflecting the nature of OD constipation. Several OD subtypes were identified. DISCUSSION: Fecobionics obtained novel pressure phenotypes in OD patients. DIs showed pronounced differences between groups. Larger studies are needed on OD subtyping.


Assuntos
Constipação Intestinal/fisiopatologia , Defecação , Trânsito Gastrointestinal , Manometria/instrumentação , Canal Anal/fisiopatologia , Biônica/instrumentação , Constipação Intestinal/diagnóstico , Fezes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Reto/fisiopatologia
6.
J Mater Chem B ; 8(40): 9362-9373, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32996542

RESUMO

A series of novel nanofibrillated cellulose (NFC) reinforced gradient intelligent hydrogels with high response rate, multiple response patterns and diversified self-driven functions were successfully prepared. Based on the effect of the hydroxide radical of NFC on the addition reaction, and on the dehydration synthesis, the variation of NFC significantly regulated the gradient structure of the intelligent hydrogels. In addition to the infiltration property of graphene oxide (GO), reinforcement of NFC enhanced the crosslinking density and Young's modulus, which built a relationship between material characteristics and near infrared laser response rate. Intelligent hydrogel actuators realized bending deformation, curling deformation, switching movements and obstacle avoidance movements. The hydrogels with high Young's modulus exhibited relatively low self-driven rates and efficiency. The self-driven mechanisms of NFC reinforced gradient intelligent hydrogels were revealed effectively by constructing the mathematical relationship curvature variation, bending degree, deformation displacement, material characteristics and incentive intensity. The investigation showed a new path for the combination of mechanical property, intelligent property and functional property of intelligent hydrogels in a bionic soft robot and health engineering.


Assuntos
Hidrogéis/química , Materiais Inteligentes/química , Resinas Acrílicas/química , Biônica/instrumentação , Celulose/química , Módulo de Elasticidade , Grafite/química , Raios Infravermelhos , Movimento (Física)
7.
Adv Mater ; 32(6): e1905362, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858634

RESUMO

Fluorescence imaging with photodetectors (PDs) toward near-infrared I (NIR-I) photons (700-900 nm), the so-called "optical window" in organisms, has provided an important path for tracing biological processes in vivo. With both excitation photons and fluorescence photons in this narrow range, a stringent requirement arises that the fluorescence signal should be efficiently differentiated for effective sensing, which cannot be fulfilled by common PDs with a broadband response such as Si-based PDs. In this work, delicate optical microcavities are designed to develop a series of bionic PDs with selective response to NIR-I photons, the merits of a narrowband response with a full width at half maximum (FWHM) of <50 nm, and tunability to cover the NIR-I range are highlighted. Inorganic halide perovskite CsPb0.5 Sn0.5 I3 is chosen as the photoactive layer with comprehensive bandgap and film engineering. As a result, these bionic PDs offer a signal/noise ratio of ≈106 , a large bandwidth of 543 kHz and an ultralow detection limit of 0.33 nW. Meanwhile, the peak responsivity (R) and detectivity (D*) reach up to 270 mA W-1 and 5.4 × 1014 Jones, respectively. Finally, proof-of-concept NIR-I imaging using the PDs is demonstrated to show great promise in real-life application.


Assuntos
Biônica/instrumentação , Césio/química , Imagem Óptica/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Animais , Compostos de Cálcio/química , Desenho de Equipamento , Humanos , Chumbo/química , Óxidos/química , Fótons , Titânio/química
8.
ACS Appl Mater Interfaces ; 11(47): 44642-44651, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31684724

RESUMO

Electronic skins are developed for applications such as biomedical sensors, robotic prosthetics, and human-machine interactions, which raise the interest in composite materials that possess both flexibility and sensing properties. Polypyrrole-coated cellulose nanocrystals and cellulose nanofibers were prepared using iron(III) chloride (FeCl3) oxidant, which were used to reinforce polyvinyl alcohol (PVA). The combination of weak H-bonds and iron coordination bonds and the synergistic effect of these components yielded self-healing nanocomposite films with robust mechanical strength (409% increase compared to pure PVA and high toughness up to 407.1%) and excellent adhesion (9670 times greater than its own weight) to various substrates in air and water. When damaged, the nanocomposite films displayed good mechanical (72.0-76.3%) and conductive (54.9-91.2%) recovery after a healing time of 30 min. More importantly, the flexible nanocomposites possessed high strain sensitivity under subtle strains (<48.5%) with a gauge factor (GF) of 2.52, which was relatively larger than the GF of ionic hydrogel-based skin sensors. These nanocomposite films possessed superior sensing performance for real-time monitoring of large and subtle human motions (finger bending motions, swallowing, and wrist pulse); thus, they have great potentials in health monitoring, smart flexible skin sensors. and wearable electronic devices.


Assuntos
Materiais Biocompatíveis/química , Biônica/instrumentação , Celulose/química , Nanocompostos/química , Condutividade Elétrica , Humanos , Hidrogéis/química , Teste de Materiais , Polímeros/química , Dispositivos Eletrônicos Vestíveis
9.
PLoS One ; 14(9): e0222711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536550

RESUMO

Cochlear implantation is a surgical procedure, which is performed on severely hearing-impaired patients. Impedance field telemetry is commonly used to determine the integrity of the cochlear implant device during and after surgery. At the Department of Otolaryngology, Cheng Hsin General Hospital (Taipei, Taiwan), the cochlear implant devices are switched on within 24 hours of their implantation. In the present study, the impedance changes of Advanced Bionics™ cochlear implant devices were compared with previous studies and other devices. The aim was to confirm previous hypotheses and to explore other potential associated factors that could influence impedance following cochlear implantation. The current study included 12 patients who underwent cochlear implantation at Cheng Hsin General Hospital with Advanced Bionics cochlear implant devices. The cochlear devices were all switched on within 24 hours of their implantation. The impedance was measured and compared across all contact channels of the electrode, both intra-operatively and post-operatively. The intra-operative impedance was compared with the switch-on impedance (within 24 hours of the cochlear implantation); the impedance was notably increased for all contact channels at switch-on. Of the 16 channels examined, 4 channels had a significant increase in impedance between the intra-operative measurement and the switch-on measurement. To the best of our knowledge, the impedance of a cochlear implant device can be affected by the diameter of the electrode, the position of the electrode arrays in the scala tympani, sheath formation and fibrosis surrounding the electrode after implantation and electrical stimulation during or after surgery. When the results of the current study were compared with previous studies, it was found that the impedance changes were opposite to that of Cochlear™ implant devices. This may be explained by the position of the electrode arrays, sheath formation, the blow-out effect and differences in electrical stimulation.


Assuntos
Cóclea/fisiopatologia , Implante Coclear/instrumentação , Implantes Cocleares , Impedância Elétrica , Eletrodos Implantados , Adulto , Biônica/instrumentação , Biônica/métodos , Implante Coclear/métodos , Estimulação Elétrica , Feminino , Perda Auditiva/fisiopatologia , Perda Auditiva/terapia , Humanos , Masculino , Taiwan , Fatores de Tempo
10.
Nat Nanotechnol ; 14(8): 776-782, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308498

RESUMO

Neuromorphic visual systems have considerable potential to emulate basic functions of the human visual system even beyond the visible light region. However, the complex circuitry of artificial visual systems based on conventional image sensors, memory and processing units presents serious challenges in terms of device integration and power consumption. Here we show simple two-terminal optoelectronic resistive random access memory (ORRAM) synaptic devices for an efficient neuromorphic visual system that exhibit non-volatile optical resistive switching and light-tunable synaptic behaviours. The ORRAM arrays enable image sensing and memory functions as well as neuromorphic visual pre-processing with an improved processing efficiency and image recognition rate in the subsequent processing tasks. The proof-of-concept device provides the potential to simplify the circuitry of a neuromorphic visual system and contribute to the development of applications in edge computing and the internet of things.


Assuntos
Biônica/instrumentação , Visão Ocular , Órgãos Artificiais , Desenho de Equipamento , Humanos , Luz
11.
Biosens Bioelectron ; 142: 111519, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326862

RESUMO

Rhinophore, a bio-chemical sensory organ with soft and stretchable/retractable features in many marine molluscs species, exhibits tunable chemosensory abilities in terms of far/near-field chemical detection and molecules' source orientation. However, existing artificial bio-chemical sensors cannot provide tunable modality sensing. Inspired by the anatomical units (folded sensory epithelium) and the functions of a rhinophore, this work introduces a stretchable electrochemical sensor that offers a programmable electro-catalytic performance towards glucose based on the fold/unfold regulation of the gold nanomembrane on an elastic fiber. Geometrical design rationale and covalent bonding strategy are used to realize the robust mechanical and electrical stability of this stretchable bionic sensor. Electrochemical tests demonstrated that the sensitivities of the as-prepared bionic sensor exhibit a linear relationship with its strain states from 0% to 150%. Bio-inspired sensory functions are tested by regulating the strain of the bionic sensor. The sensor achieves a sensitivity of 195.4 µA mM-1 in a low glucose concentration range of 8-206 µM at 150% strain for potentially far-field chemical detection, and a sensitivity of 14.2 µA mM-1 in a high concentration range of 10-100 mM at 0% strain for near-field chemical detection. Moreover, the bionic sensor performs the detection while extending its length can largely enhance the response signal, which is used to distinguish the molecules' source direction. This proposed bionic sensor can be useful in wearable devices, robotics and bionics applications which require diverse modality sensing and smart chemical tracking system.


Assuntos
Biônica/instrumentação , Técnicas Biossensoriais/instrumentação , Glucose/análise , Moluscos , Animais , Materiais Biomiméticos/química , Elasticidade , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Ouro/química , Membranas Artificiais , Moluscos/anatomia & histologia , Moluscos/fisiologia , Dispositivos Eletrônicos Vestíveis
12.
Nano Lett ; 19(6): 4017-4022, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31144824

RESUMO

Antibodies have two identical binding domains and can therefore form a well-defined conducting bridge by binding a pair of electrodes functionalized with an epitope. The conductance measured between these two fixed points on the antibody does not change with the size of the electrode gap. A second conduction path is via one specific attachment to an epitope and a second nonspecific attachment to the surface of the antibody. In this case, the conductance does change with gap size, yielding an estimated electronic decay length >6 nm, long enough that it is not possible to distinguish between an exponential or a hyperbolic distance dependence. This decay length is substantially greater than that measured for hopping transport in an organic molecular wire.


Assuntos
Anticorpos/química , Biônica/instrumentação , Epitopos/química , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Desenho de Equipamento , Proteínas Imobilizadas/química , Modelos Moleculares
13.
Soft Robot ; 6(2): 276-288, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30650016

RESUMO

The improvement of the load capacity of soft grippers has always been a challenge. To tackle this load capacity challenge, this work presents four novel types of high-load (HL) soft grippers that are bioinspired by bionic winding models. The winding models are found commonly in many animals and plants, where different winding patterns are used to grip different objects. Inspired by the winding models, we design four bionic winding structures that are driven by pneumatic artificial muscles (PAMs), and then four HL soft grippers are formed out of the winding structures. The inner cavities of the HL soft grippers contract after the PAMs are inflated, which enables objects to be wrapped to achieve gripping. Compared with most existing soft grippers, the HL soft grippers have a higher load capacity, and they can also grip various objects that have different shapes and stiffnesses without damaging them. In addition, in man-machine collaboration, operators can be in direct contact with them without being hurt. Our study helps lay the foundation for engineered systems with bionic winding structures.


Assuntos
Biônica/instrumentação , Força da Mão/fisiologia , Robótica/instrumentação , Animais , Desenho de Equipamento/instrumentação
15.
Ann Biomed Eng ; 47(2): 576-589, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30341740

RESUMO

During defecation, solid, semisolid or liquid stools are eliminated via the anus in a complex physiological process. Up to 25% of the population are affected by anorectal disorders that are poorly recognized and treated. We developed a new bionics device, a simulated stool named Fecobionics, to replace several current tests of anorectal function. Fecobionics was developed to simulate the defecation process that depends on rectal forces, the anorectal size angle, and anorectal size and sensitivity. Fecobionics provided axial pressure signatures, measurement of bending (anorectal angle) and geometric mapping in a single examination. It had the consistency and shape of normal stool. The device had a soft core with embedded electronics and a bag for distension. The paper describes the device development and validation. Furthermore, data were obtained in preliminary experiments in pigs, healthy human subjects and patients with focus on four important features of the system, i.e. measurements of pressure signatures, bending characteristics, impedance measurements and data transmission. Accurate pressure and orientation data as well as geometric profiles were successfully obtained on the bench as well as in vivo in pigs and human subjects during defecation. Fecobionics is a novel technology imitating defecation. The clinical future ultimately depends on its ability to impact on daily treatment of anorectal disorders. A potential long-term clinical application is use of the device for biofeedback training for dyssynergic defecation.


Assuntos
Canal Anal/fisiopatologia , Biônica/instrumentação , Defecação , Equipamentos para Diagnóstico , Reto/fisiopatologia , Humanos
16.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513979

RESUMO

In this study, to obtain a texture perception that is closer to the human sense, we designed eight bionic tongue indenters based on the law of the physiology of mandibular movements and tongue movements features, set up a bionic tongue distributed mechanical testing device, performed in vitro simulations to obtain the distributed mechanical information over the tongue surface, and preliminarily constructed a food fineness perception evaluation model. By capturing a large number of tongue movements during chewing, we analyzed and simulated four representative tongue movement states including the tiled state, sunken state, raised state, and overturned state of the tongue. By analyzing curvature parameters and the Gauss curvature of the tongue surface, we selected the regional circle of interest. With that, eight bionic tongue indenters with different curvatures over the tongue surface were designed. Together with an arrayed film pressure sensor, we set up a bionic tongue distributed mechanical testing device, which was used to do contact pressure experiments on three kinds of cookies-WZ Cookie, ZL Cookie and JSL Cookie-with different fineness texture characteristics. Based on the distributed mechanical information perceived by the surface of the bionic tongue indenter, we established a food fineness perception evaluation model by defining three indicators, including gradient, stress change rate and areal density. The correlation between the sensory assessment and model result was analyzed. The results showed that the average values of correlation coefficients among the three kinds of food with the eight bionic tongue indenters reached 0.887, 0.865, and 0.870, respectively, that is, a significant correlation was achieved. The results illustrate that the food fineness perception evaluation model is effective, and the bionic tongue distributed mechanical testing device has a good practical significance for obtaining food texture mouthfeel information.


Assuntos
Biônica/instrumentação , Nariz Eletrônico , Análise de Alimentos/instrumentação , Humanos , Mastigação/fisiologia , Fenômenos Mecânicos , Movimento/fisiologia , Pressão , Tato/fisiologia
17.
J Neural Eng ; 15(4): 046015, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29595147

RESUMO

OBJECTIVE: Neural stimulation is usually performed with fairly large platinum electrodes. Smaller electrodes increase the applied charge density, potentially damaging the electrode. Greater understanding of the charge injection mechanism is required for safe neural stimulation. APPROACH: The charge injection mechanism and charge injection capacity were measured by cyclic voltammetry. Electrodes were cleaned mechanically or by potential cycling in acidic solutions. The effective electrode area was measured by hydrogen adsorption or reduction of [Formula: see text]. MAIN RESULTS: The water window and safe potential window were affected by changes to electrolyte, electrode size, polishing method and oxygen concentration. Capacitance and Faradaic current contribute to the charge injection capacity. Varying voltammetric scan rate (measurement time), electrode size, polishing method, potential window, electrolyte and oxygen concentration affected the charge injection capacity and ratio of oxidation to reduction charge. Hydrogen adsorption in acidic solutions provided an inaccurate effective electrode area. Reduction of a solution phase redox species with a linear or radial diffusion profile could provide an effective electrode area. The charge density (charge injection capacity divided by electrode area) of a platinum electrode is dependent on the charge injection capacity and electrode area measurement technique. By varying cyclic voltammetric conditions, the charge density of platinum ranged from 0.15 to 5.57 mC cm-2. SIGNIFICANCE: The safe potential window, charge injection mechanism, charge injection capacity and charge density of platinum depends on electrolyte, size of the electrode, oxygen concentration and differences in electrode polishing method. The oxidation and reduction charge injection capacities are not equal. Careful control of a platinum electrodes surface may allow larger charge densities and safe use of smaller electrodes. New electrode materials and geometries should be tested in a consistent manner to allow comparison of potential suitability for neural stimulation.


Assuntos
Biônica/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento/métodos , Platina/química , Biônica/instrumentação , Biônica/normas , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/normas , Eletrodos/normas , Desenho de Equipamento/normas , Cloreto de Sódio/química
18.
ACS Nano ; 12(2): 1656-1663, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29328623

RESUMO

Neuromorphic or "brain-like" computation is a leading candidate for efficient, fault-tolerant processing of large-scale data as well as real-time sensing and transduction of complex multivariate systems and networks such as self-driving vehicles or Internet of Things applications. In biology, the synapse serves as an active memory unit in the neural system and is the component responsible for learning and memory. Electronically emulating this element via a compact, scalable technology which can be integrated in a three-dimensional (3-D) architecture is critical for future implementations of neuromorphic processors. However, present day 3-D transistor implementations of synapses are typically based on low-mobility semiconductor channels or technologies that are not scalable. Here, we demonstrate a crystalline indium phosphide (InP)-based artificial synapse for spiking neural networks that exhibits elasticity, short-term plasticity, long-term plasticity, metaplasticity, and spike timing-dependent plasticity, emulating the critical behaviors exhibited by biological synapses. Critically, we show that this crystalline InP device can be directly integrated via back-end processing on a Si wafer using a SiO2 buffer without the need for a crystalline seed, enabling neuromorphic devices that can be implemented in a scalable and 3-D architecture. Specifically, the device is a crystalline InP channel field-effect transistor that interacts with neuron spikes by modification of the population of filled traps in the MOS structure itself. Unlike other transistor-based implementations, we show that it is possible to mimic these biological functions without the use of external factors (e.g., surface adsorption of gas molecules) and without the need for the high electric fields necessary for traditional flash-based implementations. Finally, when exposed to neuronal spikes with a waveform similar to that observed in the brain, these devices exhibit the ability to learn without the need for any external potentiating/depressing circuits, mimicking the biological process of Hebbian learning.


Assuntos
Materiais Biomiméticos/química , Biomimética/instrumentação , Índio/química , Redes Neurais de Computação , Fosfinas/química , Silício/química , Sinapses/fisiologia , Biônica/instrumentação , Cristalização , Desenho de Equipamento , Semicondutores , Sinapses/química
19.
ACS Nano ; 12(2): 1680-1687, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29357225

RESUMO

The development of electronic devices possessing the functionality of biological synapses is a crucial step toward replicating the capabilities of the human brain. Of the various materials that have been used to realize artificial synapses, renewable natural materials have the advantages of being abundant, inexpensive, biodegradable, and ecologically benign. In this study, we report a biocompatible artificial synapse based on a matrix of the biopolymer ι-carrageenan (ι-car), which exploits Ag dynamics. This artificial synapse emulates the short-term plasticity (STP), paired-pulse facilitation (PPF), and transition from STP to long-term potentiation (LTP) of a biological synapse. The above-mentioned characteristics are realized by exploiting the similarities between the Ag dynamics in the ι-car matrix and the Ca2+ dynamics in a biological synapse. By demonstrating a method that uses biomaterials and Ag dynamics to emulate synaptic functions, this study confirms that ι-car has the potential for constructing neuromorphic systems that use biocompatible artificial synapses.


Assuntos
Materiais Biocompatíveis/química , Biônica/instrumentação , Carragenina/química , Potenciação de Longa Duração , Plasticidade Neuronal , Prata/química , Sinapses/fisiologia , Materiais Biomiméticos/química , Biomimética/instrumentação , Humanos
20.
J Stroke Cerebrovasc Dis ; 27(2): 372-380, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29097056

RESUMO

Stroke is a major global health problem whereby many survivors have unmet needs concerning mobility during recovery. As such, the use of robotic-assisted devices (i.e., a bionic leg) within a community setting may be an important adjunct to normal physiotherapy in chronic stroke survivors. This study will be a dual-center, randomized, parallel group clinical trial to investigate the impact of a community-based training program using a bionic leg on biomechanical, cardiovascular, and functional outcomes in stroke survivors. Following a baseline assessment that will assess gait, postural sway, vascular health (blood pressure, arterial stiffness), and functional outcomes (6-minute walk), participants will be randomized to a 10-week program group, incorporating (1) a physiotherapy plus community-based bionic leg training program; (2) physiotherapy only; or (3) usual care control. The training program will involve participants engaging in a minimum of 1 hour per day of bionic leg activities at home. Follow-up assessments, identical to baseline, will occur after 10 weeks, and 3 and 12 months postintervention. Given the practical implications of the study, the clinical significance of using the bionic leg will be assessed for each outcome variable. The potential improvements in gait, balance, vascular health, and functional status may have a meaningful impact on patients' quality of life. The integration of robotic devices within home-based rehabilitation programs may prove to be a cost-effective, practical, and beneficial resource for stroke survivors.


Assuntos
Membros Artificiais , Biônica/instrumentação , Serviços de Saúde Comunitária , Extremidade Inferior/inervação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Acidente Vascular Cerebral/terapia , Fenômenos Biomecânicos , Doença Crônica , Protocolos Clínicos , Inglaterra , Marcha , Humanos , Avaliação de Programas e Projetos de Saúde , Desenho de Prótese , Qualidade de Vida , Recuperação de Função Fisiológica , Projetos de Pesquisa , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...